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ABSTRACT
In this study, a novel Halloysite nanotube/ferrihydrite (HNT/FH) nanocomposites have been synthesized 
using simple chemical precipitation method. The prepared nanocomposites were characterized 
using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, Transmission Emission 
Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDX) and Brunauer–Emmett–Teller (BET). 
The morphology of the synthesized nanocomposites revealed the attachment of FH to the lining of 
HNT. XRD patterns revealed the nanocomposite having a monoclinic structure which agrees with 
the FTIR results. The high surface area of 328.6 m2/g and high aspect ratio of the nanocomposites 
endowed it with enforcing ability and enhanced water absorption capability, which in turn makes it 
highly hydrophilic. The high hydrophilic and adsorption ability of the novel nanoparticles has opened 
a wide opportunity for it to be utilized in the separation of wastewater.
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INTRODUCTION 
In recent years, attention has been shifted towards 

the application of nanoparticles as additives in the 
membrane for treatment of wastewater. The general 
idea behind the addition of the nanoscale second 
phase is to create synergy between the various 
constituents, such that novel properties capable of 
meeting or exceeding design expectations can be 
achieved [1]. 

The aim of fabricating a composite is to 
combine materials with the objective of getting a 
more desirable combination of properties. The 
properties of nanocomposites rely on a range of 
variables, particularly the matrix material, which 
can exhibit nanoscale dimensions, loading, the 

degree of dispersion, size, shape, and orientation 
of the nanoscale second phase and interactions 
between the matrix and the second phase [2]. 
The structure of nanocomposites usually consists 
of the matrix material containing the nanosized 
reinforcement components in the form of particles, 
whiskers, fibers, nanotubes, etc [3]. Expanding 
nanocomposite has been demonstrated to exhibit 
collaborations with contaminants in water, gases 
and even soil and such properties open opportunity 
for new and enhanced ecological innovation [4]
Nonetheless, small sized molecule likewise brings 
issues such mass transport and inordinate flux 
drop at whatever point connected in flow-through 
frameworks and additionally certain problems in 
separation and reuse, and even conceivable hazard 
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to biological communities and human well-being 
caused by the potential release of nanoparticles 
[5]. A compelling way to deal with the previously 
mentioned bottlenecks is to manufacture hybrid 
nanocomposite by grafting or coating the fine 
particles onto strong particles of bigger size [6].

Nanocomposites are often being chosen in 
most of the application due to its nanoparticles 
properties that bring about different enhancements 
to the matrix, its multifunctional abilities which 
comes from its different constituents, the broad 
chemical functionalization which made it tuneable 
to suits any environment or applications, and its 
huge interphase zone that allow more modification 
[7, 8]. In the field of nanocomposites, many diverse 
topics exist including composite reinforcement, 
barrier properties, flame resistance, electro-optical 
properties, cosmetic applications, bactericidal 
properties [9]. Numerous studies regarding the 
utilization of nanocomposite have been explored 
towards the wastewater treatments application. For 
instance, Ahmad and his co-worker have developed 
PSF membrane functionalized by blending SiO2 
nanocomposite to enhance the hydrophobicity of 
the membrane. The study resulted in improved 
permeate flux of the SiO2 embedded membrane 
from 1.08L/m2h to 17.32L/m2h. Additionally, they 
also found that increasing the nanocomposite 
load has concurrently increased the membrane’s 
antifouling properties. 

Additionally, several studies have reported that 
the incorporation of nanoparticles such as GO[10–
13],TiO2[14–17], Fe3O4[18–20], and clay[21–23] 
onto polymers could not only adjust the structure 
and physicochemical properties which include 
changing the hydrophilicity, porosity, charge 
density, chemical, thermal and mechanical stability 
of membranes, but institute distinctive properties 
such as antibacterial and antifouling properties 
into the membranes.

Among commonly used nanoparticles, halloysite 
nanotube (HNT) has emerged as one of the efficient 
additives for membrane incorporation. It possessed 
championed characteristics such as fine particle, 
high surface area, excellent dispersion as well as 
great cation exchange capacity and has the ability 
to maintain uniform shape, sustained release rates 
and no initial over dosage[24]. Since HNT has the 
ability to be tuned accordingly, there is a possibility 
to increase the uptake of -OH group by increasing 
the absorption capabilities of the composite. This 
absorption capability can be enhanced by coupling 

HNT with absorptive materials such as Ferrihydrites 
(FH). Ferrihydrites (FH) is an efficient sorbent for 
inorganic and organic pollutants and therefore 
have great potentials in environmental science 
and engineering applications [25]. Because of its 
properties as an effective sorbent for numerous 
inorganic and organic pollutants in soils and 
water, FH plays a key role in pollution abatement 
of contaminated soils, water treatment technology, 
and the metal and mining industries. 

Therefore, with the motivation to the couple, the 
novel HNT-FH to increase the water absorption 
capabilities, in this study, a thorough discussion 
of facile synthesis of HNT-FH nanocomposite 
will be provided. The novel nanocomposites 
were characterized for its morphological and 
physicochemical properties with various 
characterization machines to evaluate its properties.

 
MATERIALS 

Ferric chloride hexahydrate (FeCl3.6H2O), 
hydrochloric acid (HCl), ammonia solution (NH4OH), 
halloysite nanotube nanopowder supplied by Sigma 
Aldrich has been used for synthesizing HNT-FH 
nanocomposite. For fabrication of nanocomposite-
embedded membrane, commercial PES pellets 
(Ultrason®E) purchased from BASF SE Germany 
is the main component in membrane formation. 
Dimethylacetate (DMAc) and polyvinylpyrrolidone 
(MW=24,000 g/mol) supplied by Merck has been 
used as a polymer solution and pore forming agent. 
For wastewater treatment analysis, the wastewater was 
collected from the cafeteria in Universiti Technology 
Malaysia (UTM), Johor, Malaysia.

EXPERIMENTALS
Synthesis of HNT-FH nanoparticles

The synthesis of HNT-FH initially started with 
the preparation of FH precursor by adding 0.205 
mL of 0.01M HCl in 250 mL of deionized water. 
This has been followed by addition of 1.0M ferric 
chloride hexahydrate (FeCl3.6H20) as a precursor, 
approximately 67.75gm into HCl dilute solution.  
The precursor solution of FH was maintained at 65 
°C. Then, 0.5 g of HNTs were added to the precursor 
solution under constant stirring. The pH of the 
solutions is kept at 7 by addition of ammonium 
solution. The precipitates then separated from the 
matrix to obtain the resultant nanocomposite [26]. 
Finally, the HNT-FH precipitate was rinsed with 
distilled water and left to age for a week at ambient 
temperature before filtration and drying at 65 °C. 
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The dried nanocomposite was then grinded into 
powder for further testing. 

Characterization of HNT-FH nanocomposite
Fourier-transform infrared (FTIR) spectra of the 

samples were recorded with a Fourier-transform 
infrared spectrometer (Thermo, Madison, USA) in 
the wavenumber range from 4000 cm−1 to 500 cm–1 
using KBr pellets. Powder X-ray diffraction (XRD) 
data were collected using a Rigaku D/max-rA X-ray. 
The morphologies and sizes of the nanocomposite 
were observed using a high-resolution transmission 
electron microscope (TEM) (Model: HT 7700, 
Hitachi). Brunauer–Emmett–Teller (BET) analysis 
was conducted with a specific area and pore analyzer 
(NOVA 2200e, Quantachrome, USA). The elemental 
mapping of the nanoparticles and the membrane 
has been done by Energy Dispersive X-Ray (EDX) 
analysis (Model: TM 3000, Hitachi).

Performance analysis of HNT-FH nanocomposite
 The HNT-FH nanocomposite was analyzed 

for its performance in terms of water uptake 
ability as well as water flux by incorporating 
the nanocomposite into PES membrane. Pure 
water permeation flux (PWP) of membranes was 
obtained using dead-end tubular UF using the 
method proposed by Tseng, Zhuang, and Su (2012)
[27].  Before pure water flux estimation, the cut 
membrane inside the cell was initially pressurized 
with distilled water at 101.32 kPa for 30 min and was 
then used in subsequent pure water flux estimation 
experiments at 68.95 kPa for 2 h. The water uptake 
test of the nanocomposite-incorporated membrane 
was carried out by employing a method reported 
by Wang et al., (2002) [28]. The membranes were 
vacuum-dried at 100 ◦C for 24 h, weighed and 
immersed in deionized water at room temperature 
for 24 h. The wet membranes were wiped dry 
and quickly weighed again. The water uptake of 
membranes is reported in weight percent as follows:

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑢𝑢𝑢𝑢𝑊𝑊𝑊𝑊𝑢𝑢𝑊𝑊 =
𝑊𝑊𝑤𝑤𝑊𝑊𝑊𝑊 −𝑊𝑊𝑑𝑑𝑊𝑊𝑑𝑑

𝑊𝑊𝑑𝑑𝑊𝑊𝑑𝑑
× 100 

Where Wwet and Wdry are the weights of the wet 
and dry membranes respectively.

PES-HNT/FH membrane fabrication for wastewater 
separation analysis

Fabrication of PES/HNT-HFO flat sheet MMMs 
is also based on the method explained by Abdullah, 

et al., 2016 [29]. First, the uniform suspension that 
has been prepared is poured onto a smooth glass 
plate and cast by a casting blade at a speed of 5cms-
1 in order to form a film with 250 mm thickness. 
Then, the cast film is immersed into DI water bath 
together with the glass plate for a few minutes. This 
step will allow the phase inversion to take place. 
The membrane is then transferred to another water 
bath once it is peeled off naturally from the glass 
plate. The membrane is left in the water bath for 3 
days to ensure complete removal of residual solvent 
and PVP. The membrane is then dried at ambient 
temperature (with humidity between 60 and 70%) 
before using.

The cross-flow UF study has been carried out 
using the method used by Gohari et al. (2014) [30]. 
The permeates has been sampled every 10 min for 
the course of 2 h. The specific end goal of this test 
is to assess the impact of wastewater concentration 
and on the permeate flux and foulant dismissal 
of membranes. The equation used to determine 
the PWP flux has been used to determine the 
permeate flux when the membrane is used to treat 
the synthetic oil emulsions. To decide the dismissal 
of the membrane against the wastewater at various 
feed conditions, the accompanying condition was 
utilized [31] 

𝑅𝑅% = �1 −
𝐶𝐶𝑢𝑢
𝐶𝐶𝑓𝑓
� × 100 

Where R% is the membrane rejection ratio, 
Cp (mg/L) is the permeate concentration and Cf 
(mg/L) is the feed concentration. Then, the oil 
concentration of samples is analyzed using UV-vis 
spectrophotometer at 305 nm.

RESULTS
Morphological properties of HNT-FH nanocomposite

The morphological studies of the magnetic 
halloysite-iron oxide nanocomposite were performed 
using transmission electron microscope (TEM). In 
Fig. 1, HNT was attached with clusters of FH. FH 
nanoparticle aggregates were composed of even smaller 
subunits of about 10 nm, implying that the smaller 
nanoparticles formed first and then agglomerated 
around the nanotubes. The appearance of tubes can 
be observed at the edge of the nanocomposite and 
FH agglomerates were found around the nanotube 
as indicated by the red circle. Since FH is slightly 
magnetic, it is difficult to acquire a stable image to 
depict the attachment of FH on the HNT.
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PHYSICOCHEMICAL ANALYSIS OF HNT-FH 
NANOCOMPOSITE
Functional group analysis

In this study, attenuated total reflectance Fourier 
transform infrared (ATR-FTIR) showing the 
functional groups of the nanocomposites as well 
as the Mixed Matrix Membrane. Fig. 2 shows the 
ATR-FTIR graphs of all mix matrix membrane in 
comparison to pristine PES membrane. In the FTIR 
spectrum of HNT-FH absorption bands at 701 and 
3628 cm−1 are ascribed to −OH groups. The band 
at 910 cm−1 is assigned to the bending vibration of 
Al-OH. Other bands at 1000 −1100 and 450 −550 
cm−1 are due to the Si−O stretching and Si −O 
bending vibrations, respectively [32]. In addition 
to that, peaks found at the range of 1200 to 1300 
cm-1, 1400 to 1500 cm-1, 1600 to 1800 cm-1 and 
3000 to 3500 cm-1 corresponded to Fe-O, O=C=O 

stretching, O-H bending and stretching vibrations, 
respectively[33].

Energy dispersive X-ray (EDX) analysis further 
reveals the presence of carbon and nitrogen 
along with the three main constituents, oxygen, 
aluminum, and silicon in HNT-FH, signifying 
the functionalization of FH onto HNTs. The EDX 
analysis is as shown in Fig. 3.

Further analysis of the nanocomposite 
composition done through XRD analysis. 
Fig 4 shows the XRD pattern of the HNT-FH 
nanocomposite. The typical diffraction peaks of 
halloysite are located at 2θ = 24.8°[34] and the 
diffraction peaks located at 2θ = 33.34, 34.65° 
represent the typical peaks for FH [29]. All the 
typical peaks can be found in the XRD pattern of 
the synthesized HNT-FH as shown in fig 3. All other 
sequential peaks at 40.801°, 49.426°, and 53.988° 

 

Fig. 1. TEM micrograph of HNT-FH at different scale bar (a) 20nm and (b) 10 nm 

   

Fig. 1. TEM micrograph of HNT-FH at different scale bar (a) 20nm and (b) 10 nm

 

Fig. 2. FTIR spectra of  FH, HNT, and FH-HNT nanocomposite 

   

Fig. 2. FTIR spectra of FH, HNT, and FH-HNT nanocomposite
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are matched to iron oxide peaks which denote the 
higher presence of FH which is aligned with the 
synthesizing ratio of HNT-FH as mentioned in the 
previous part.

Adsorption and surface charges analysis
Further analysis of the adsorption isotherm 

of HNT-FH was done through BET analysis. 
The surface area of the HNT-FH nanoparticles 
is calculated to be 328.6 m²/g in terms of BET 
surface area. In comparison to the FH surface area 
obtained from our previous work which is 233.5 
m2/g[8], that indicated the nanocomposites have 
140.7% higher surface area which proved that the 
addition of HNT has increased the surface area of 
the nanocomposite. 

In order to better understand the mechanics 
behind the nanocomposite surface interactions, 
the zeta potential measurements were carried out 
to evaluate the surface charges of HNT, FH, and 
HNT-FH particles separately. From the analysis, 
it was found that HNT has a negative charge 
which is in accordance with the study done by 
Hu et al., (2016)[35]. High electronegativity 
promotes the attachment of the positive charge 
water molecules which in turn contribute to 
the increased hydrophilicity of the modified 
membrane incorporated with HNT-FH. All of the 
zeta potential analyses were carried out at constant 
pH of 7. HNT recorded average zeta potential of 
-14.3mV, FH at 27.3mV and the nanocomposite 
HNT-FH recorded the zeta potential of 21.6mV. 
Nanoparticles with zeta potential values of 20 to 

30 mV are moderately stable at which the stability 
depends on the Van der Waals attractive forces and 
electrostatic repulsive due to adsorbed double layer 
(EDL)[36, 37] 

This increased surface area has affected the 
membrane hydrophilicity as it simultaneously 
increased the water absorption area[38–40]as well 
as frequent oil spill accidents.We report in this work 
the fabrication of a zwitterionic polyelectrolyte brush 
(poly(3-(N-2- methacryloxyethyl-N,N-dimethyl. 
The analysis of the nanoparticles isotherm has 
shown that HNT-FH nanocomposites had resulted 
in type II isotherm in which it is macroporous with 
pore diameters more than 50nm and flat surface 
with uniform surface energy [41]. The results 
show that the nanocomposite adsorption isotherm 
exhibited massive deviation from the Langmuir 
model of adsorption principally owing to active 
heterogeneities of the nanocomposite surface as 
well as to the molecular interfaces. As shown in Fig. 
4, it can be seen that the intermediate flat region in 
the isotherm corresponds to monolayer formation. 
In Fig. 5, the existence of mesopores can be pointed 
towards the lagging amongst the adsorption and 
desorption branch [42]. 

PERFORMANCE ANALYSIS OF HNT-FH
Water uptake analysis

The water uptake analysis of the membrane 
provides critical insight into how the embedded 
of nanocomposite can help in enhancing the 
hydrophilicity of the membrane. Fig. 6 illustrated 
the static contact angle of the membrane as well as 
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Fig. 3: EDX Elemental component of pristine PES membrane, nanocomposite-embedded 
membrane, and HNT-FH nanocomposite 

   

Fig. 3. EDX Elemental component of pristine PES membrane, nanocomposite-embedded membrane, and HNT-FH nanocomposite
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the ones embedded with different nanoparticles. 
It was observed that the membrane incorporated 
with HNT-FH recorded the lowest static contact 
angle but the highest water uptake. In comparison 

to pristine membrane and membrane incorporated 
by only HNT and FH, respectively, a significant 
increase of the hydrophilicity can be seen by the 
momentous differences between contact angle and 

 

Fig. 4. XRD Patterns of HNT-FH nanocomposite 
   

 

Fig. 5. Isotherm linear plot of HNT-FH nanocomposite 
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Fig. 6 Static contact angle and water uptake of membrane-embedded with different nanoparticles. 

   

Fig. 4. XRD Patterns of HNT-FH nanocomposite

Fig. 5. Isotherm linear plot of HNT-FH nanocomposite

Fig. 6 Static contact angle and water uptake of membrane-embedded with different nanoparticles.
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water uptake percentage of the membrane.
The contact angle of PES neat membrane and the 

modified membranes with different nanoparticles 
embedded in it has a significant difference as 
depicted in Fig. 6. As depicted, it can be seen that 
the contact angle of the membrane with HNT-
FH is the lowest with only 50.4° in comparison 
with pristine PES membrane which is 81.39°. 
Both HNT and FH embedded membrane shown 
higher contact angle in comparison with neat PES 
but still higher than a membrane with HNT-FH 
nanocomposite. The water uptake ability of the 
membrane also recorded the highest with HNT-
FH nanocomposite as an additive and shows more 
than five-fold increase in comparison with the neat 
membrane. This results showed that the addition 
of HNT-FH into membrane has significantly 
amplified the membrane contact angle and water 
uptake capability which reflected the membrane 
excellent hydrophilicity and water permeability. 

Water Flux Analysis
As shown in Fig. 7, the pure water flux of the 

membrane embedded with HNT-FH recorded 
the highest which is 642.86 L/m2h. The water flux 
of the membrane incorporated with HNT-FH 

nanocomposite increased to more than two-fold 
as compared to pristine PES membrane which is 
63.57 Lm-2h-1 . A membrane with only HNT and 
FH also shown increased water flux with 106.45 L/
m2h and 87.55 L/m2h, respectively. The significant 
increase in water flux of the membrane with 
HNT-FH nanocomposite are owed to this is due 
to the abundant –OH group from the HNT-FH 
nanocomposites as confirmed by FTIR analysis 
depicted in Fig. 2. This was attributed to more 
water absorption hence increased hydrophilicity. 
The water flux of the HNT-FH incorporated 
membrane can be observed to be relatively 
higher in comparison to another nanocomposite 
membrane. Table 1 listed the comparison of 
HNT-FH incorporated membrane with another 
nanocomposite membrane. It can be seen that 
HNT-FH membrane recorded the highest pure 
water flux with over ten-fold differences in 
comparison with another membrane.

The HNT-FH incorporated membrane was 
further analyzed for its performance in the treatment 
of wastewater. The pure water flux experiment was 
repeated by replacing the feed with wastewater 
acquired from the local cafeteria. Wastewater from 
food and beverages industry often composed of 
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Fig. 7. Pure Water flux of different membrane embedded with HNT-FH and nanocomposite HNT-FH 
Table 1: Pure Water Flux (L/m2h) of membrane incorporated with different nanocomposite 

Membrane Pure Water Flux (L/m2h) Author 
HNT-FH/PES 642.86 This study 

HMO/PES 573.2 [30] 
coNP/PES 257.79 [43] 
GO/PES 20.4 [10] 
TiO2/PES 7.2 [44] 
ITO/PES 3.0 [45] 

 

 

Table 1. Pure Water Flux (L/m2h) of membrane incorporated with different nanocomposite
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a different component, mainly grease and an oily 
substance. Therefore, membrane hydrophilicity 
is important to achieve high separation of these 
materials. Fig. 8 depicted the foulant rejection of 
the membrane with the wastewater as feed. It can 
be seen that membrane incorporated with HNT-
FH nanocomposite recorded the highest rejection 
of foulant with significantly higher water flux 
recovery after the wastewater sample analysis. 
Pristine PES membrane shows only 88% water 
flux recovery as opposed to HNT-FH incorporated 
membrane with 95% water flux recovery after the 
wastewater treatment analysis which indicated 
that incorporation of HNT-FH nanocomposite has 
substantially increased in the water permeability 
of the membrane even after treatment of the 
wastewater. 

CONCLUSION
In the present study, halloysite nanotube-

Ferrihydrites (HNT-FH) were synthesized and 
characterized by hydrophilic properties. FTIR and 
TEM images of the synthesized nanocomposites 
confirmed the attachment of FH to the surface 
of HNT. large pore volume and high surface of 
HNT-FH was concluded from BET whereas the 
obtained result from the XRD that the abundance 
of -OH group has endowed the nanocomposite 
with enhanced ability for water absorbency 
making it suitable to be applied in treatment of 
oily wastewater and the surface charge analysis of 
the nanocomposite had proven the capability of 
nanocomposite in enhancing the hydrophilicity 

 

Fig. 8: Foulant rejection (%) and water flux recovery percentage of membrane incorporated with 
different nanoparticles 
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and antifouling properties due to its electrophoretic 
mobility, steric barrier as well as agglomeration 
inhibition.
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